【数学与统计及交叉学科前沿论坛------高端学术讲座第152场】
报告题目:Modular flows of signed graphs
报 告 人:韩苗苗 天津师范大学
报告时间:5月14日星期三14:00-15:00
报告地点:腾讯会议:559-211-173
报告摘要:A concept of flows on signed graphs naturally comes from the dual of local tensions of graphs embedded on non-orientable surfaces. It was conjectured by Bouchet in 1983 that every flow-admissible signed graph admits a nowhere-zero integer 6-flow. The recent 11-flow theorem of signed graphs, obtained by DeVos et al.(JCTB2021), is established by proving the existence of a balanced $Z_2\times Z_3$-flow, and then converting $Z_2$-, $Z_3$-flows to integer 3-, 5-flows, respectively. It is crucial to study on how to convert $Z_k$-flows to better integer flows. In this talk, we will present our recent results on converting $Z_k$ flows to integer flows in signed graphs.
报告人简介:韩苗苗,天津师范大学数学科学学院副教授,2018年美国西弗吉尼亚大学获得博士学位(导师为赖虹建教授和罗荣教授)。主要研究兴趣包括图的染色,Tutte整数流理论等问题,在图论领域J. Combin. Theory Ser. B, SIAM J. Discrete Math, J. Graph Theory 等杂志发表学术论文二十余篇。主持国家自然科学基金青年项目、面上项目以及参与多项天津市自然科学基金。