金沙6165总站线路检测(中国)有限公司-Weixin百科

学术空间

A Vanishing Theorem on a Class of Forelli-Rudin Structure

【数学与统计及交叉学科前沿论坛------高端学术讲座第158场】

报告题目:A Vanishing Theorem on a Class of Forelli-Rudin Structure

: 王安 首都师范大学教授

6月10日周15:00-15:45

点: 阜成路西校区教二楼302

报告摘要: Abstract: We focus on the d-boundedness of the Bergman kernel function on a class of Forelli-Rudin structure. We use the series method and the Hua method to derive the expression of the Bergman kernel function. When ÎZ+ , we provide the finite form of the Bergman kernel function for the domain. By holomorphic invariants, we obtain that the Bergman kernel function is d-bounded with respect to the Bergman metric. As a corollary, we have that the L2 cohomology vanishing theorem is valid on the domain.

报告人简介:王安博士,首都师范大学数学科学学院,教授,博士生导师,主要研究方向为多复变函数论和中小学数学教育。主持、参加国家自然科学基金项目和北京市自然科学基金项目十多项并担任京教版中学数学教材分册主编。已发表论文五十多篇,其中SCI期刊三十多篇。多次参加国际和国内多复变学术会议及数学教育研讨会,并报告研究成果。已培养基础数学、数学教育、教育统计方向的硕士研究生、博士研究生五十多人。

.

报告题目:电流体中Poisson-Nernst-Planck-Navier-Stokes模型的拟中性极限与混合层问题

:王术 北京工业大学教授

6月10日周下午15:45-16:30

点: 阜成路西校区教二楼302

报告摘要: 本报告将讨论电流体Poisson-Nernst-Planck-Navier-Stokes(PNP-NS)模型的拟中性极限问题与小参数多尺度结构稳定性问题。拟中性是半导体、等离子体等物理过程中的一种基本物理假设,首先由美国贝尔实验室W. Van Roosbroeck提出。本报告将以溶剂中电解质的粒子电扩散物理化学电动力学PNP-NS模型为例从数学上建立电流体物理的拟中性理论,证明一般“坏”初值条件下PNP-NS系统一类初边值问题的小Debye长度电中性极限,并组建具边界层、初始层和混合层的近似解到解的收率速率。

报告人简介:王术,1968年2月生,教授,博士生导师。现为北京工业大学二级教授,北京工业大学数学一级学科博士学位授权点责任教授兼任数学系主任,北京工业大学数学统计学与力学学院学术委员会主任,中国工业与应用数学学会理事。曾任中国数学会理事、北京工业大学应用数理学院院长等职务。曾获教育部新世纪优秀人才(2004年)、北京市学术创新人才和北京市长城学者,2016年获得国务院政府特殊津贴。曾做国家自然科学奖、国家自然科学基金重点项目等会评专家。1998年南京大学博士毕业,曾在中科院数学所和奥地利维也纳大学做博士后,曾在美国加州理工学院做高级访问学者。主要研究:偏微分方程及其应用。现主持或曾主持国家自然科学基金8项(含重点项目1项),独立获得北京市科学技术奖二等奖1项,获得北京市教育教学成果一等奖1项,出版著作3部,在《Adv. In Math.》《ARMA》《Math Ann》《SIAM J Math Anal》《CPDE》《J. Diff. Eqns》《M3AS 》等杂志发表SCI收录学术论文200余篇。


报告题目:Fractional-Order Dynamic Modelling of Psoriasis with Stem Cell Replacement Treatment: A Comprehensive Mathematical Study

:Prof (Dr.) Priti Kumar RoyJadavpur University

6月10日周下午16:30-17:10

点: 阜成路西校区教二楼302

报告摘要:Psoriasis is a chronic autoimmune skin disorder driven by dysregulated immune responses, where abnormal interactions between T cells and dendritic cells lead to excessive inflammatory cytokine production. This triggers the hyper-proliferation of epidermal keratinocytes while depleting Mesenchymal stem cells (MSCs), which play a crucial role in immune modulation. Since disease progression depends on both current and past states, incorporating memory eflects is essential for accurate modelling. This study develops a fractional-order mathematical model of psoriasis, integrating T cells, dendritic cells. keratinocytes, and MSCs. Using Caputo, Caputo-Fabrizio, and Atangana-Baleanu-Caputo operators, we analyze how memory influences disease dynamics. The models stability is confirmed via the Banach contraction principle, and keratinocyte concentration is evaluated through numerical schemes capturing non-local effects. Optimal control is implemented using the Forward-Backward Sweep Method (FBSM) with TNF-α inhibitors and IL-23 blockers. Results indicate that a combined treatment strategy optimally reduces keratinocyte density, offering deeper insights into disease progression and effective therapeutic approaches.

报告人简介:Prof. (Dr.) Priti Kumar Roy is a distinguished researcher at the Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, India. He serves as an Editorial Board Member for Mathematical Biosciences. His research focuses on mathematical modeling in biology and ecology, contributing to significant advancements in these fields. Dr. Roy has published extensively in reputed journals, demonstrating her expertise in applying mathematical theories to biological systems. Her work is widely recognized for its impact on understanding complex ecological and biomedical dynamics.